Thermodynamics of cement degradation

Bruno Huet, George Scherer (Princeton University)

> Introduction:

- > A. Thermodynamic properties of cement hydrates
 - ✓ C-S-H, AFm, AFt, Hydrogarnets: what do we know and what can we estimate?
- > B. What can we learn from a logK data set and how?
 - ✓ Reactions path modeling as a first step into analyzing a thermodynamic dataset
- > C. Towards quantitative long term predictions...
 - ✓ Use of dedicated reactive/transport model: specificity of cement pastes
- > Conclusion:

✓ CO2 storage in deep saline aquifers

From Canadian CO2 Capture and Storage Roadmap Strawdog, Bill Gunter, Alberta Research Council

✓ <u>Duguid's experiment of cement degradation in CO₂ saturated brine</u> (after 31 days)

A. Thermodynamic properties of cement hydrates

What data/model are required?

- **√** Activity correction model (Debye Huckel, B-dot,..)
- $\sqrt{}$ Thermodynamic properties of Aqueous species:

nature of the aqueous complex and their LogK

SUPCRT'92 (LLNL)

× Thermodynamic properties of cement phases:

What is the equation of state for minerals?

$$\Delta G^{0}_{P,T} = \Delta_{f} G^{0} - S^{0}_{P_{r},T_{r}} (T - Tr) + \int_{T_{r}}^{T} C^{0}_{P_{r}} dT - T \int_{T_{r}}^{T} C^{0}_{P_{r}} d \ln T + \int_{P_{r}}^{P} V^{0}_{T} dP$$

$$C^{0}_{P_{r}} = a + bT + cT^{-2}$$

Are the data available in the literature?

- 1. Gibbs free energies at 25 °C known for most phases but
 - scatter in the results
 - erroneous Data/interpretation
 - internal consistency of the database
- 2. Entropies and heat capacities:
 - known for only a few cement phases (Babushkin 1985)
- 3. Molar volumes:
 - estimated from lattice parameters and molar mass

Can we handle incomplete set of data?

$$\ln\left(\frac{K_2}{K_1}\right) = -\frac{\Delta_r H^0}{R} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$$

2. Evaluate best estimates of entropy and heat capacity (Helgeson 1979) use the property of a structural analog

C-S-H: Discrete modeling of the solid solution: LogK = f(Ca/SI)

- 1. $\Delta_f G^0$ Numerous study, mostly at 25°C Linear relationship between LogKf and Ca/Si
- 2. Entropy and heat capacity:

$$6xCaO.SiO_2.(x+0.8)H_2O \Leftrightarrow 5CaO.6SiO_2.5.5H_2O + (6x-5)Ca(OH)_2 + 4.3H_2O$$

3. Molar volume: density weakly related to Ca/Si: C-S-H(I) 2250 kg.m³, C-S-H(II) 2350 kg.m³

AFm: Substituion of OH⁻, CO₃²⁻, SO₄²⁻ or Cl⁻

- 1. $\Delta_f G^0$ available at 25°C Complete data set for Calcium monosulfoaluminate
- 2. Entropy and heat capacity:

$$3CaO.Al_2O_3.CaCO_3.11H_2O + CaSO_4 + 1 H_2O_{(z)} \quad \Leftrightarrow \quad 3CaO.Al_2O_3.CaSO_4.12H_2O + CaCO_3$$

••••

3. Molar volume:

density or lattice parameter available

4. Results: example of calcium monocarboaluminate

AFt: Substituion of CO₃²⁻, SO₄²⁻ or Cl⁻

- 1. $\Delta_f G^0$ available at 25°C Complete data set for ettringite (Babushkin or Perkins and Palmer)
- 2. Entropy and heat capacity: $3CaO.Al_2O_3.3CaCO_3.32H_2O + 3CaSO_4 \quad \Leftrightarrow \quad 3CaO.Al_2O_3.3CaSO_4.32H_2O + 3CaCO_3$
- 3. Molar volume:

 density or lattice parameter available

B. What can we learn from a logK data set and how?

Aim:

- 1- Study the change of the chemical composition of a given cement with T or any extensive variables .
- 2-Make the LogK database useful for the engineer using simpler tool than reactive transport code.

Method:

Use of geochemical reaction path model

Exemple:

Addition of CO₂ in a fully hydrated cement paste (closed system)

► T vs CO2 diagram using the Full built LogK database

Only 2 C-S-H: C-S-H_h and C-S-H_L

\triangleright Calcium monosulfo aluminate: LogKf = -71.3 (instead of -72.4)

> C. Towards quantitative long term predictions...

Use of reactive/transport code:

```
HYTEC (School of Mines),
NUFT (LLNL),
FLOTRAN (LANL),
TOUGH REACT (LBNL),
```

••••

1-Coupling of a transport code to a geochemical code:

Sequential Non-Iterative Approach

Sequential Iterative Approach

- 2- Transport of total concentration of a mobile chemical element (N_c -1= 9).
 - Same diffusion properties for every aqueous species
- 3- Main assumptions:
 - Local chemical equilibrium / kinetic
 - Mechanism taken into account and associated database

> Mineralogical profile:

$CaO/SiO_2/CO_2/H_2O$ system

> Change in porosity and diffusion coefficient:

Archie's law
$$D_{e,t} = D_{e,t} \cdot \left(\frac{\phi_t - \phi_c}{\phi_0 - \phi_c}\right)^m , \quad m = 3.32$$

> <u>Diffusion driven advection:</u>

- 1- Water released from hydrate during their degradation
- 2- Change in the mean density of the paste

Conclusion

- > Thermodynamics of cement hydrates
 - few exhaustive Dataset (Babushkin et al.)
 - scattering of standard Gibbs free energies

<u>But</u> - LogK = f(T) using best estimates

- > Develop interactive common database
 - ensure internal consistency
- > Necessity of modeling solid solution of C-S-H
- > Challenge for reactive/transport code
 - 1- Modeling accurately transport properties as a function of porosity change
 - diffusivity change over order of magnitudes (10⁻¹² to 10⁻⁹ m².s⁻¹).
 - 2- Quantify diffusion driven advection in fully saturated conditions